
Automated Debugging and Process Analysis

Interz0ne 4
March 2005

Richard Johnson | rjohnson@idefense.com

Introduction

� Who am I?
Richard Johnson
Senior Security Engineer, iDEFENSE Labs
Other Research: nologin.org

� What is iDEFENSE?

� What is the purpose of this talk?
� Explore the current and potential uses of debug tools

� Discover the methods by which one can develop their own
debugging tools

� Show off my prototype trace tool – dltrace

� Inspire the audience to look beyond the traditional use of
tracers and debuggers

Agenda

� Process Analysis 101

� The Anatomy of a Debug Tool

� dltrace – Prototyping a Portable Shared Library Call
Tracer

� Demo & Conclusion

Process Analysis 101

Debuggers vs Tracers

� Debug tools are designed to allow for the
control and inspection of another process's
execution
� Register state

� Virtual memory

� Signals

Debuggers vs Tracers

� Debuggers
� Interactive

� Powerful and flexible

� Dumb

� Sometimes scriptable / programmable

� Tracers
� Non-interactive
� Typically single-purpose

Current Uses of Tracing

� System Call Tracing
� System Calls (syscalls) provide the interface between

userspace and the kernel.

� Effective for narrowing the cause of a program crash

� strace, truss, tusc, par, ktrace (kernel mode)

� Shared Library Call Tracing
� Allows higher level program execution analysis

� Helpful when analyzing the function of large areas of code

� ltrace (Linux only), truss/sotruss (SUN only)

� Performance Profiling
� Locate areas of inefficient code

� Locate code ideal for optimization due to heavy utilization

Potential Uses of Tracing

� Deep process state analysis
� Complex state machines keep track of program execution

� Real-time, actionable process analysis

� Detection and recovery from faults
� Process monitor intercepts signals and corrects faults

� Injection of fault handler code into traced process

� Software vulnerability analysis
� Many Windows debug tools have a community which develops

scripts or plugins for software analysis tools such as windbg,
IDA Pro and Ollydbg

Dtrace: a kernel mode approach

� SUN released with Solaris 10

� Kernel Resident

� Works towards hybrid approach
� Scriptable

� Flexible

� Disadvantages
� Not portable

� Difficult to load libraries into process space or interact with
run-time linker

The Anatomy of a Debug Tool

The Anatomy of A Debug Tool

� Target binfmt handling
� Binary format structures

� Headers
� Dynamic Table

� Symbol Tables

� Linking and Loading
� Reference: Linkers and Loaders - Devine

� Process analysis and control interface
� Kernel Exported

� The ptrace interface

� The proc virtual file system

� Event Handling

ELF Binfmt

� What is ELF?
� Executable and Linkable Format

� Originally introduced in UNIX SVR4 in 1989 and is now used in
Linux and most System V derivatives like Solaris, IRIX,
FreeBSD and HP-UX

� Reference:
ELF Portable Formats Specification, Version 1.1
 Tool Interface Standards (TIS)

� Contains useful information for debugging
including symbol tables, string tables, library
dependencies, and debugging information

ELF Binfmt

A program written in a high level language
must be compiled and linked before it becomes
an executable ELF binary

� ELF Object Types
� Relocatable Objects

� Executable Objects

� Shared Objects

ELF Binfmt

Relocatable Objects
� Header info

� ELF Header
� Details how to access sections within the object

� Section Header Table
� Details how to access various sections in the file

� Object Code

� Relocation info

� Symbols
� .symtab – Contains information about all symbols being defined or

imported (not present if binary is stripped)

� .dynsym – Contains information about external symbols that need
to be resolved or dynamic symbols that are exported by the binary

� May contain unresolved references to symbols in other
objects or libraries

ELF Dynamic Linking

ELF Object Linking
� The linking process involves:

� Merging of object code into Executable or Shared Objects
� Resolving symbol references across objects

� Replacing labels with resolved addresses

� Creation of the Program Header Table

The program header table
� Gives the Linux kernel's ELF loader information about how to

create a process image for the binary.

� Segments define the separation of memory when mapping the
file into the process's address space and contain one or more
sections.

Symbol Resolution

� Symbols are resolved by enumerating section
tables until a .dynsym or .symtab section is
found:

for (shdr = melf_sectionGetEnum(melf); shdr;

 shdr = melf_sectionEnumNext(melf, shdr))

{

 if ((shdr->spec.section.sh_type == SHT_DYNSYM) ||

 (shdr->spec.section.sh_type == SHT_SYMTAB))

 {

 enum_symtab(melf, shdr);

 }

}

Symbol Resolution

� Enumerate the symbol table with a Elf32_Sym
pointer to determine symbol name and load
address:

void enum_symtab(MELF *melf, ELF_SPEC_HEADER *shdr)

{

 Elf32_Sym *sym;

 unsigned long index = 0;

 while ((sym = melf_symbolTableEnum(melf, shdr, index++)))

 printf("%s\n", melf_symbolGetName(melf, shdr, sym));

}

Process Analysis and Control Interface

� Most modern operating systems expose a
debugging interface that allows a user process
to monitor the execution of other processes.

� For UNIX, the interface is exposed by the
kernel through a system call or virtual device
which provides the following functionality:
� Process Control (attaching, stepping, etc)

� Register Access

� Memory Access

ptrace Debug Interface

� The ptrace debug interface
� Exposed by the kernel via a system call

#include <sys/ptrace.h>

long ptrace(enum __ptrace_request request, pid_t pid, void
*addr, void *data)

� Supported by
� Linux

� FreeBSD

� Solaris
� HP-UX

ptrace Debug Interface

Process Control
PTRACE_ATTACH Attach to the specified process id

PTRACE_SINGLESTEP Execute one instruction and return to debugger
PTRACE_CONT Continue execution. Will not return to debugger

until a signal is received.

Data Access
PTRACE_GETREGS Copy array of general purpose registers to data
PTRACE_GETFREGS Copy array of floating point registers to data
PTRACE_PEEKDATA Read a word of memory from addr into data

Platform Dependant
PTRACE_PEEKUSR Read from process's USER area (platform dependent)
PTRACE_SYSCALL Execute until next system call
PTRACE_TRACEME If executed before exec() process will return

control to the debugger once entry point has been
reached

proc Debug Interface

� The proc debug interface
� Exposed by the kernel via the proc virtual file system as device

files.

� Supported by
� Linux
� BSD
� Solaris

proc Debug Interface

� Process control is accomplished by writing
commands as strings to the /proc/<pid>/ctl file
as shown:

attach stops the target process and allows the sending
process to become the debug control process

detach continue execution of the target process and
remove it from control by the debug process

run continue running the target process until a signal
is delivered, a breakpoint is hit, or the target
process exits.

step single step the target process, with no signal
delivery.

wait wait for the target process to come to a steady
state ready for debugging. The target process must
be in this state before any of the other commands
are allowed

Signals may also be sent by writing the name of the signal lowercase
and without the SIG prefix.

- dltrace -
Prototyping a Shared Library Call Tracer

Target Acquisition

� Process initialization
� Execute specified binary if necessary

� Sending a SIGKILL after the fork() and before the execve() call
will allow the debugger to attach before rtld has been executed

� Attaching to a process
� Utilize the api call exposed by the debug interface to notify the

kernel your process id has become the debugger of the traced
process

Load Target Binary

� Load symbols
� Load the .symtab if present

� Load the .dynsym

� Load interpreter
� The interpreter is a typically a shared object and is loaded in a

similar manner to shared libraries, however special note should
be taken of interpreter symbols

Binary Loading

� Load shared libraries
� Iterate the dynamic section of the target binary for

DT_NEEDED flags

� Search library paths for required libraries
� /lib:/usr/lib
� /etc/ld.so.conf

� LD_LIBRARY_PATH

� Store hash of ELF file

� Enumerate symbols

� Enumerate dynamic section

Trace Initialization

� Shared library trace initialization
� Allow runtime linker to map library dependancies into memory

� Walk target process's address space by pages, looking for ELF
signature

� Compute hash of ELF file in memory

� Iterate loaded library list for matching hash
� Iterate library's linked list of symbols and add library load offset to

symbols
� Insert into splay tree

� Insert breakpoint

Trace Initialization

� System call trace initialization
� Enumerate loadable segments in each binary

� Disassemble each segment to locate system call interrupt or
trap

� Insert breakpoint

Trace Execution

� The debug program will gain control of the
traced process when any breakpoint is reached
or a signal is received for that process by the
kernel

� Handle events
� Signals

� System calls

� Shared library calls

� Shared library returns

Handling Events

Shared Library Calls
� Lookup current EIP register value in tree of shared library call

addresses

� If call parameters have not been determined, analyze parent
function

� Analyze function's assembly code to determine argc
� push

� calls

� jmps

� mov's where the destination operand is an offset from esp

� Store arg count

� Analyze arguments to determine type
� If value is not within mapped memory space, display as integer

� Dereference pointers and check for string values
� Display pointer if not determined to be integer or string

� Probably a struct pointer

Handling Events

Shared Library Call Returns
� Add a breakpoint at the calling address (return address)

whenever a shared library call is executed

� Add to callstack

� On event, check address of the breakpoint on the top of the
callstack

� Return values are typically stored in eax on x86 processors

Demo & Conclusion

Conclusion

� The Linux/UNIX world is still lacking an
adequate set of debugging tools

� Cross-platform development is easy due to
similar debug interfaces and necessary due to
the lack of appropriate tools across the board

� A hybrid of debugger and trace tool should
increase both the power and speed of
automated process analysis

Questions?

